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ABSTRACT 

Darling and Robbins, in discussing certain sequential tests that do not neces- 
sarily terminate with probability one, give a family of Monte-Carlo procedures 
for estimating the probability of termination. The choice of estimator is left 
open, although one presumably would like to have a small variance (the es- 
timators are unbiased). As a contribution to this problem, we show that these 
estimators do not have moments higher than the first. 

1. Introduction. Dar l ing and  Robbins  [1] discuss certain sequential tests tha t  

do not  necessarily terminate  with probabi l i ty  one. Specifically, as a test for  whether  

a no rma l  mean, /~ ,  is positive or  not,  they propose  the following: Let  X 1, X 2  .. .  

be iid N(#,  1) r a n d o m  variables.  Let  Sn = X1 + "" + Xn and N be the first n > m 

so that  Sn > an, or  be + ~ if no such n occurs. Here  an = (22n log logn)~ ;  2 > 1. 

One concludes the mean is positive if for  some n > m ,  Sn > a,,; i.e., if  N < oo. 

The  strong law of  large numbers  implies that  for  p > 0 ,  Pu(N < ~ )  = 1 and Dar -  

ling and  Robbins  [1] show tha t  for  # = 0 ,  

a = P o ( N  < oo) = O ( [ l o g l o g m ] l / 2 / [ l o g m ]  z-1 ) .  

A way o f  obtaining a Monte-Car lo  est imate of  a is p roposed  by Darl ing and 

Robbins  [1] : Let  f ,  denote  the NOt, 1) density. Then fo r /z  > 0 ,  

f( n 
a = P o ( N  < oo) = Z Hfo(x,)dx, 

n N = n )  I 

fc [ f ° (x i ) ]  " 

N 

= E~, H [ f o ( X , ) / f ~ , ( x , ) ]  
1 

= E ,  e x p { -  pS,,,~ r + N#2/2}.  
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Letting M = first n > m so that S, > a. - n/t, 

(2) c~ = E o e x p { - p S  M - M # 2 / 2 }  = EoL, say. 

One can make (say) k successive Monte-Carlo determinations of  M and hence L, 

obtaining L1, "", Lk. Then l-'k = ~-d k L t / k  is an unbiased estimator of  ~ and is 

consistent as k ~ ~ .  The question arises as to the best choice of  p; say that 

which gives L as small a variance as possible. Of  course EoM = E~N decreases 

as # increases, so that one prefers to use a large value of # ,  to keep the cost of  

sampling small. As a contribution to this problem, we show that for every t > 1, 

EoE = + ~ .  An optimality criterion may still be based on the first moment  

(mean absolute deviation, e.g.), balancing expected sample size against expected 

error. We do not enter into such considerations here. 

2. Demonstration. We proceed to bound EL t from below. I t  will be seen 

that the only condition required on a,  is that it increases with n and that a ,  = o(n). 

In the sequel, E means Eo. We begin by noting that 

(3) E/2 > E/~ l(M>m ). 

We obtain a lower bound for the last quantity by considering E(IJIM, SM-1). 

By the definition of M, SM > aM -- MIz, while on ( M > m) , SM- 1 < a_ 1 -- ( M - 1)/~ 

<= aN -- (M --1)/~. Writing SN = SN-1 + X M ,  the preceding shows that 

XN _--> aN -- M/~ -- SN-1 and on ( M > m ) ,  a M - M / t - S N - 1  = - /~ .  Let 

c(#,t) = in f ,>_~E[exp( - I~ t (X-u){ IX  >= u]. I t  is easily checked that the in- 

fimum occurs at u = - #  and that cot, t) > 0. Then on (M > m), 

E(E]M, S M_ 1) = E[exp{t( - /2S N -/2M2/2)} ] M, S M_ 1] 

(4) = e x p { t ( - # a N  + Iz2M/2)}E[exp{-#t(XN + SN-I  + Ml t -aN) ) [  

M, SM- 1] 
> C(#, t)exp{t(--I~aM + #2M/2)}, 

since given M and SM_ 1 , X N is a N(0, 1) variable constrained to exceed 

aM -- Mp -- SM-t and the latter quantity is larger than - #  on (M > m). Thus 

from (3) and (4), we see that 

(5) EIJ > c(#, t)E exp{ t ( -  #aN +/z2M/2)} I(M>,,)- 

Choose 6 > 0. We may choose nn > m so that n > n6 ~ a. < 612n/2. Then 

(6) exp{--#taM + kt2tM/2}l(M>,,) 

_-> exp{t#2(1 -- 6)M/2}I(M>,,V 
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Together,  (5) and (6) show that  

(7) Eexp{t#2(1-~5)M/2} = +oo  ~ EL t = +co.  

We investigate Ee TM for  s > 0.  We note first that  (Sk/k < -IX, k = 1, ..., n) 

(M > n).  

Let W(t) denote standard Brownian motion.  Since {S,/n} has the same joint  

distribution as {W(l/n)} , we see that  P(M > n) > P(W(t) < -IX, l ln < t < 1). 

Standard results for  Brownian mot ion imply 

P(W(t) < 

where O ( . )  is the s tandard 

Since W(1/n) ~ N(O, 1/n), 

P(M > n) 

- ix ,  l ln <- t <_ l i W ( l l n  ) = - w )  

P(W(t) < w - i x ,  O < t <  l - l / n )  

P(W(t) < w - # ,  0 < t <_ 1) 

2 0 ( w - i x ) - i  i f w > i x  

0 if w < IX, 

normal  distribution function. 

we see that  for e > 0,  

> [2(I)(o) - p) - 1]e-"°~Z/2dco 

¢t 

elf" -.+.V2 = > [ 2 O ( e ) -  do~ 
+ ~  

= I - 2~ ( ~ )  - 1 ]  [ 1  - ~(~/~(# + ~ ) ) ] .  

For  some b > 0 and sufficiently large x ,  1 - O(x) > b e x p { - x Z / 2 } / x .  Hence or  

~ufficiently large n, 

(8) P(M > n) > c exp{-n(IX + e)2/2}/~/n, 

where c depends on e and # but  not  n .  F rom (8), we see that  

Ee=M > Y, k>lP( e~u > k) = • P(M > (log k)/s) > E (k -(~+`)V2=) (s/ logk) x/2 = 

+ co if (# + e)Z/2s =< 1. Since e is arbitrary, Ee TM = + co if s > #2/2. Referring 

to (7), we see that  EL ~ = + oo if t#2(1 - 5)/2 > IX2/2 or if t(1 - 5) > 1. Since 6 

is arbitrary,  E/2 = + Go if t > i .  

An  objection to L as a Monte-Car lo  estimator o f  Po(N < oo) should be noted. 

Let 

L,  = e x p { - # S , -  n#Z/2}. 
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It is weU-known that Ln is martingale. Thus L = LM is just this martingale stopped 

by M. Although EL, = 1 for all n, M has the property that EL M < 1. However, 

if this martingale sequence is stopped by a bounded stopping time, T, the expec- 

tation is preserved: EL r = 1. Since in practice, any Monte-Carlo simulation 

would generate only bounded stopping times, it is not clear whether one can 

effectively estimate Po(N < oo) in this way. 

The author wishes to acknowledge helpful conversations with Esther Samuel 

and Richard Gundy. 
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